「パラドックス」とは?意味と使い方を例文付きでわかりやすく解説

言葉

今回ご紹介する言葉は、カタカナ語の「パラドックス」です。

「パラドックス」の意味・使い方・語源・類義語などについて分かりやすく解説します。

スポンサードリンク

「パラドックス」とは?

パラドックス(paradox):一般に正しいと思われていることに矛盾することがら

「パラドックス」の意味を詳しく


「パラドックス」には、2つの意味があります。

1つは、一般に正しいと思われていることに矛盾することがらです。また、一見正しくないようでも、実際にはある意味で真理をついていることも意味します。

もう1つは、正しそうに見える前提に、妥当に見える推論を重ねた結果、受け入れがたい結論になることです。

 

前者の意味は、日本語では「逆説」「背理」「逆理」といいます。また、後者の意味は、日本語では「二律背反」といいます。

「パラドックス」とは、簡単に言うと「正しそうにも、正しくなさそうにも見えること」です。

 

「パラドックス」は、結論が「論理的矛盾であるもの」と「直観的には受け入れがたいが、論理的矛盾ではないもの」の2つに分けることができます。前者を狭義の「パラドックス」、後者を広義の「パラドックス」や「擬似パラドックス(pseudoparadox)」といいます。

また、「パラドックス」は「パラドクス」と表記する事もあります。

狭義の「パラドックス」の例

狭義の「パラドックス」の例としては、「ベリーのパラドックス」が挙げられます。

「ベリーのパラドックス」は、「19文字以内で記述できない最小の自然数」というような文によって生じるパラドックスです。

 

自然数はほぼ無限に存在するのに対し、19字の日本語で記述できる内容は有限です。そのため、「19文字以内で記述できない最小の自然数」に当てはまる数は、必ず存在するはずです。

しかし、そのような数も、実際には「19文字以内で記述できない最小の自然数」という19字によって記述されてしまいます。

そのため、「19文字以内で記述できない最小の自然数」という定義通りの数は、絶対にあるということも、ないということもできます。

「擬似パラドックス」の例

「疑似パラドックス」の例としては、「モンティ・ホール問題」が挙げられます。

これはアメリカの長寿番組「Let’s Make a Deal」の中で行われたゲームが元となり、有名になった問題です。番組司会者モンティ・ホールの名前をとって、名前がつけられました。

モンティ・ホール問題
あなたは、A・B・Cの3つのドアから、1つを選択することができます。3つのドアのうち、1つのドアの先には景品があります。2つのドアは、はずれです。

まず、あなたが3つのうち1つのドアを選びます。

その後、あなたがドアを開くまえに、モンティは、あなたに選ばれていないドアのうち、はずれのドアを1つ開きます。すると、残っている2つのドアのうち、1つがあたり、もう1つがはずれということになります。

 

ここで、モンティはいいます。

「選ぶドアを変えてもいいですよ」

さて、ここで最初に選んだドアを開けることも、ドアを変えて開けることもできます。どちらのドアを選ぶと、当たる確率が高いでしょうか?

結局、後半は2つのドアのうち、片方があたりという状況になっています。そのため、「どちらのドアを選んでも同じ確率である」と考える人が多いです。

しかし、実際にはドアを変えた方が、当たる確率は2倍になります。

スポンサードリンク

「パラドックス」の使い方

  1. 「急がば回れ」は、「急いでいる時こそ安全に遠回りすべき」という意味のことわざだ。これもパラドックスの一例といえるだろう。
  2. パラドックスについて考えることが、結果的に数学や哲学の発展につながった。

「パラドックス」の語源

「パラドックス」の語源はギリシャ語の “para”“doxa” です。

“para” には「反対」、 “doxa” には「通念」「意見」という意味があります。

スポンサードリンク

「パラドックス」の類義語

「パラドックス」には以下のような類義語があります。

  • 逆説
  • 背理
  • 逆理
  • 二律背反

有名な「パラドックス」の例

アキレスとカメのパラドックス

足が速いアキレスが、足の遅いカメを追いかけても、永遠にカメに追いつくことができないというパラドックスです。

アキレスがカメが元いた地点に着いたとしても、カメは必ず前進しています。そのため、両者の距離は徐々に縮まっていきますが、常にカメが前を歩いていることになります。

エピメニデスのパラドックス

「クレタ人は嘘つきであると、あるクレタ人はいった」というような文におけるパラドックスです。

仮にクレタ人が嘘つきである場合、「クレタ人は嘘つきである」という内容が嘘であるはずです。つまり、「クレタ人は正直者」ということになります。

しかし、これは「クレタ人が嘘つき」という前提と矛盾しています。

 

一方、仮にクレタ人が正直者である場合、「クレタ人は嘘つきである」という内容が真実であるはずです。つまり、「クレタ人は嘘つき」ということになります。

しかし、これは「クレタ人が正直者」という前提と矛盾しています。

 

つまり、クレタ人が嘘つきであろうと、正直者であろうと、矛盾が生じます。

このような文章自体の否定を利用したパラドックスを、「自己言及のパラドックス」「嘘つきのパラドックス」といいます。

ハゲ頭のパラドックス

ハゲ頭に毛を1本足したとしても、ハゲ頭です。また、2本、3本と足したとしても、やはりハゲ頭です。

これを繰り返すと徐々に毛の量は増えていきますが、ハゲ頭とそうでない頭の明確な境界線はありません。そのため、「どれだけ髪の毛があろうと、ハゲである」ということになります。

古代ギリシャの哲学者、エウブリデスが考えたとされています。

テセウスのパラドックス

「テセウスの船」を修理し、使用されていた木材を一部新しくしたとします。修理後は、多少木材が変わっていますが、当然「テセウスの船」のままです。

その後、船の修理を繰り返した結果、元々使われていた部品は、すべて新しいものに変えられてしまったとします。これでもまた「テセウスの船」であるといえるのかというのが、「テセウスのパラドックス」です。

また、元々船に使われていた古い木材を組み立て直し、船をつくったとします。これは「テセウスの船」といえるのかという派生問題もあります。

親殺しのパラドックス

「ある人が過去の時間に移動し、自身の祖父を祖母と出会う前に殺したらどうなるのか」という問題です。

以下のような論理が無限にループします。

  1. 祖父を殺す
  2. その人の両親のどちらかは生まれてこない
  3. その人自身も生まれてこない
  4. 祖父が殺される理由がなくなるため、祖父と祖母が出会う
  5. その人の両親は生まれて来る
  6. その人が生まれる

➅の後は、➀に戻ります。

このような「過去の出来事の改変によって矛盾が生じること」のことを、「タイムパラドックス」といいます。

抜き打ちテストのパラドックス

先生が次のように言ったとします。

「来週の月曜日から金曜日のどこかで抜き打ちテストを行います。テストをやるかどうかは、当日になってはじめてわかります。」

 

しかし、仮に抜き打ちテストが金曜日だった場合、木曜日の放課後の時点で「抜き打ちテストが金曜日であること」がわかってしまいます。

すると、「テストをやるかどうかは、当日になってはじめてわかる」という抜き打ちテストの前提が崩れてしまいます。

つまり、金曜日に抜き打ちテストをやることは不可能であるといえます。

 

また、仮に抜き打ちテストが木曜日だった場合、水曜日の放課後の時点で「抜き打ちテストが木曜日か金曜日であること」がわかってしまいます。

しかし、金曜日に抜き打ちテストをやることは不可能であるはずなので、水曜日の放課後の時点で「抜き打ちテストが木曜日であること」が確定します。

すると、「テストをやるかどうかは、当日になってはじめてわかる」という抜き打ちテストの前提が崩れてしまいます。

 

つまり、木曜日に抜き打ちテストをやることは不可能であるといえます。

同じ理由で、水曜日、火曜日、月曜日の順番で遡ると、抜き打ちテストは実施不可能ということになってしまいます。

スポンサードリンク

まとめ

以上、この記事では「パラドックス」について解説しました。

英語表記パラドックス(paradox)
意味一般に正しいと思われていることに矛盾することがら
語源ギリシャ語の “para” と “doxa”
類義語逆説、背理、逆理、二律背反
「有名なパラドックス」の例アキレウスとカメのパラドックス、エピメニデスのパラドックスなど

「パラドックス」は、哲学者や数学者でない限り、日常生活の中で頻繁に向き合うものではありません。

しかし、「なぜそのような矛盾が生じるのか」ということを考えるのは、頭の体操になります。たまには、難解なパラドックスについて、腰をすえて考えてみるのもよいかもしれません。

スポンサードリンク